Background
- The prognosis for patients with liver-dominant metastatic melanoma is dismal with a survival time of approximately 2 months.
- Recently introduced drugs are limited by toxicity, long induction periods (e.g., vemurafenib) or applicability (e.g., dabrafenib - vemurafenib is an inhibitor of BRAF mutations, but these mutations do not occur in cutaneous melanoma and are evident only in a subset of patients with cutaneous melanoma (40% to 60%).
- There are no agents meaningfully altering the natural history of metastatic melanoma.
- Regional therapies deliver high-dose chemotherapy to the whole organ while limiting untoward systemic toxicity.

Chemosaturation-PHP*
- Isolates the liver from the systemic circulation using a system of special catheters introduced percutaneously.
- Infusion via the proper hepatic artery allows perfusion of the liver without systemic administration of chemotherapy.
- The procedure allows for considerable dose escalation to the cancer-burdened organ and provides treatment for both limited extra-hepatic disease.
- Regional hepatic infusion is a double-balloon catheter positioned the extrahepatic vasculature, forced to remove chemotherapeutic agents, and then returned to the systemic circulation.

The procedure is minimally invasive and repeatable.

Study endpoints:
- Randomized, open-label, multicenter phase 3 study.
- Study endpoints primary:
 - Hepatic progression-free survival (hPFS) (RECIST)
 - Time from randomization to hepatic disease progression or death.
- Secondary:
 - Hepatic objective response rate
 - Overall survival

Patient population
- Male/female: 61/39
- Median age: 59 years (range 19-80)
- ECOG class: 0: 11/44, 1: 33/44
- Performance status: 0: 11/44, 1: 33/44
- BAC constituted: active treatment (n=39), supportive care/watchful waiting (n=10).

Baseline characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>PH-P randomized (n=44)</th>
<th>BAC only (n=21)</th>
<th>BAC to PHP crossover (n=28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (y)</td>
<td>59 (42-72)</td>
<td>66 (51-73)</td>
<td>62 (46-70)</td>
</tr>
<tr>
<td>Primary tumor site</td>
<td>Dural</td>
<td>89/85</td>
<td>BAC-PHP randomized (n=44)</td>
</tr>
<tr>
<td>Palmar</td>
<td>11/12</td>
<td>11/12</td>
<td>BAC only (n=21)</td>
</tr>
<tr>
<td>Cutaneous</td>
<td>86/82</td>
<td>86/82</td>
<td>BAC to PHP crossover (n=28)</td>
</tr>
<tr>
<td>Hepatic tumor burden</td>
<td>≤50%</td>
<td>77/70</td>
<td>77/70</td>
</tr>
<tr>
<td><50%</td>
<td>13/12</td>
<td>13/12</td>
<td>13/12</td>
</tr>
<tr>
<td>75%</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>100%</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>Prothrombin time</td>
<td><2 seconds</td>
<td>8/8</td>
<td>8/8</td>
</tr>
<tr>
<td>Efector bilirubin</td>
<td>≤3.0 mg/dL</td>
<td>21/33</td>
<td>21/33</td>
</tr>
<tr>
<td>Interior bilirubin</td>
<td>≤3.0 mg/dL</td>
<td>52/53</td>
<td>52/53</td>
</tr>
<tr>
<td>ALT increased</td>
<td>10/8</td>
<td>8/8</td>
<td>8/8</td>
</tr>
<tr>
<td>AST increased</td>
<td>30/8</td>
<td>12/12</td>
<td>12/12</td>
</tr>
<tr>
<td>Blood albumin decreased</td>
<td>8/8</td>
<td>8/8</td>
<td>8/8</td>
</tr>
<tr>
<td>Blood calcium decreased</td>
<td>10/8</td>
<td>10/8</td>
<td>10/8</td>
</tr>
<tr>
<td>Blood bilirubin increased</td>
<td>10/8</td>
<td>10/8</td>
<td>10/8</td>
</tr>
</tbody>
</table>

Melanoma-PHP
- 3.5 mg/m2 as a 30-minute intra-arterial infusion
- an additional 30 minutes of extracorporeal filtration at end of infusion (sham control)
- allowed up to 8 treatments, repeated every 4–6 weeks.
- Best alternative care (BAC): investigator’s choice of systemic, regional or other appropriate therapy.
- crossover to PHP permitted after hepatic progression (if patients still meet eligibility criteria).

Treatments

- BAC: constituted:
 - active treatment (n=39),
 - supportive care/watchful waiting (n=10).
- Active treatments:
 - Temozolomide (n=20)
 - supportive care (n=19).

BAC treatments

- BAC constituted:
 - active treatment (n=39),
 - supportive care/watchful waiting (n=10).
- Active treatments:
 - Temozolomide (n=20)
 - Chemoradiation (n=10).
- Ynithromycin (n=3)
- Systemic chemotherapy (n=6).

Conclusions

- Efficacy of melphalan PHP in BAC-PHP crossover patients was consistent with that seen in PHP randomized patients with hepatic metastases from cutaneous melanoma.
- Crossover from BAC to PHP after hepatic disease progression led to a median 14 months survival advantage vs BAC alone.
- The safety profile of melphalan PHP in BAC-PHP crossover patients was similar to that seen in PHP randomized patients.
- PHP delivery of melphalan is a new treatment option for unresectable metastatic melanoma in the liver.

Study investigators

Marybeth Hughes, National Cancer Institute, Bethesda, MD
Douglas W. Helbing, Swedish Medical Center, Seattle, WA
Jonathan S. Zager, 1. LLS Multi-Center Cancer & Research Institute, Tampa, FL
Mark Yarmak, Cancer Institute of New Mexico, Albuquerque, NM
Gary Bates, Albany Medical Center Hospital, Albany NY
Sethy Agrawal, MD, Lake’s Cancer Center, Spartan, IN
Eric Weinstein, Harlem Melanoma Center, Montclair, NJ
Richard Royal, University of Texas MD Anderson Cancer Center Houston, TX
James Pignon, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, PA.

References

Support for initial multidisciplinary workflow was provided by British Telecom Systems Inc. and the American Society of Clinical Oncology Clinical Practice, June 1-5, 2010, Chicago, IL.

#8570

Percutaneous Hepatic Perfusion (PHP) with Melphalan versus Best Alternative Care (BAC) in Patients with Unresectable Hepatic Metastases from Melanoma: A Post-hoc Analysis of PHP-randomized vs BAC-to-PHP versus BAC-only Patients

H. Richard Alexander, Jr. on behalf of the CS-PHP Investigators (University of Maryland School of Medicine, Baltimore, MD)